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ABSTRACT 
Recently, several innovative tools have found their way into 
mainstream use in modern development environments. However, 
most of these tools have focused on creating and modifying code, 
despite evidence that most of programmers’ time is spent 
understanding code as part of maintenance tasks. If new tools 
were designed to directly support these maintenance tasks, what 
types would be most helpful? To find out, a study of expert Java 
programmers using Eclipse was performed. The study suggests 
that maintenance work consists of three activities: (1) forming a 
working set of task-relevant code fragments; (2) navigating the 
dependencies within this working set; and (3) repairing or creating 
the necessary code. The study identified several trends in these 
activities, as well as many opportunities for new tools that could 
save programmers up to 35% of the time they currently spend on 
maintenance tasks. 

Categories and Subject Descriptors 
D.2.6 [Programming Environments]: Integrated environments. 

General Terms 
Design, Human Factors. 

1. INTRODUCTION 
In past decades, it has become increasingly clear that most 
software undergoes a brief period of rapid development, followed 
by a much longer period of maintenance, added features, and 
adaptation to new contexts of use [4]. Thus, an important 
challenge in software engineering research is to create new and 
more useful tools for understanding and reshaping software as its 
requirements change. 

Several new tools have been widely adopted, but they typically 
focused only on the creation of code. In particular, Java 
developers have quickly adopted Eclipse, an integrated 

development environment (IDE), for its incremental compiling, 
refactoring support, and “quick fixes” for common errors. This is 
despite evidence that 60-90% of software development costs 
involve the reading and navigation of code as part of 
programmers’ maintenance tasks [8]. While there have been 
extensive efforts to study these activities, few have assessed the 
impact of modern IDEs on these tasks. 

In this paper, we describe a study of expert Java programmers 
using the Eclipse IDE to work on five maintenance tasks. Our 
goal was to discover fundamental activities in maintenance work 
and use this understanding to elicit design requirements for new 
tools to support maintenance tasks. The results of our study 
suggest that maintenance work interleaves three fundamental 
activities: (1) collecting a group of task-relevant code fragments, 
which we call a working set; (2) navigating these code fragments’ 
dependencies (such as uses and declares relationships); and (3) 
repairing or creating the necessary code. We identify many trends, 
including that programmers spent an average of 35% of their time 
simply navigating between dependencies, and an average of 46% 
of their time inspecting task-irrelevant code. These observations 
and many others motivate the design of several new tools. 

In the next section, we briefly review prior research on 
maintenance tasks. In Section 3 we describe the design of our 
study. In Sections 4 and 5, we describe qualitative and empirical 
assessments of our data, respectively. We end in Section 6 with a 
set of design recommendations for maintenance-oriented tools, 
and a conceptual sketch of a new IDE under development. 

2. RELATED WORK 
Maintenance work has been studied from many perspectives. For 
example, many theories of software comprehension include the 
notion that understanding results in part by the recognition of 
“beacons,” or recurring patterns of code [3, 6]. Corritore and 
Widenbeck studied the direction of programmers’ comprehension 
strategies, finding that object-oriented programmers tend to start 
top-down, but use an increasingly bottom-up approach as they 
work [5]. Teasley studied the effects of naming-style [17], finding 
that poorly named program elements can affect novice 
comprehension, but have little impact on expert comprehension. 
Green compared the impact of textual and visual languages, 
finding that visual languages better facilitate the understanding of 
dataflow, but incur more interactive overhead when editing [11]. 
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One limitation of all of these studies is that they have typically 
had programmers study a program for some (often fixed) period 
of time and only then have them work on a maintenance task. This 
is despite evidence that programmers interleave reading and 
modifying under more realistic conditions [7]. To our knowledge, 
there have been no studies of the influence of IDEs on 
maintenance tasks without such artificial constraints. 

In addition to studies, there have been several tools designed to 
support software maintenance. For example, Antoniol et al. 
describe a system for detecting design patterns [1], which may 
better help programmers understand the software architecture of 
large systems. Other maintenance tools, such as the one described 
by Beyer et al., support queries on specific structures in programs 
[2]. Müller describes a class of reverse-engineering tools [14] that 
are designed to help understand legacy systems. While all of these 
tools have proven beneficial for forming a holistic understanding 
of software architectures, to our knowledge, there are no tools that 
directly support the actual work of maintaining code, other than 
the tools offered by existing IDEs. 

3. THE ECLIPSE STUDY 
The goal of our study was to discover fundamental activities in 
maintenance work in order to inspire new ideas for more helpful 
tools. To this end, we employed a methodology [12] that involves 
recording every detail of programmers’ work in full screen-
captured videos. The study required programmers to complete 
five maintenance tasks over a 70-minute period while responding 
to intermittent interruptions. We included interruptions to reduce 
the study’s artificiality: there is considerable evidence that 
interruptions are frequent in software engineering workplaces [10, 
15] and we wanted to see if IDEs could help handle them.  

Our decision to study programmers in the lab instead of “in the 
large” was driven by our need to compare programmers’ 
strategies. Had we studied programmers working on different 
code, as would be the case in industry, we would not know if 
differences in programmers’ work were due to variations in 
strategy or in code. Because this was a lab study, programmers 
worked alone, had no long-term deadlines, and were motivated 
only by the monetary incentive that we provided. This places 
obvious limitations on the study’s generality. We will address 
these issues throughout this section and at the end of this paper. 

3.1 The Participants 
We recruited 10 programmers. In a pre-test survey, 7 claimed to 
be “Java experts” and 3 claimed “above-average” Java expertise. 
All claimed to use either Eclipse or Visual Studio “regularly,” and 
reported programming a mean of 24 (±20) hours a week. The 
group was all male with a mean age of 23 (±3) years, and was 
comprised of 6 senior and 2 doctoral computer science students, 1 
MS in computer engineering, and 1 MS in information systems. 

3.2 The Paint Program 
The Paint program (shown in Figure 1) was a 503-line Java 
Swing application with 9 Java classes (in 9 files), which allowed 
users to draw, erase, clear and undo colored strokes on a white 
canvas. It was based on the concept of a PaintObjectConstructor, 
which created strokes from mouse locations accumulated between 
mouse down and up events. Because participants were unfamiliar 
with the code, our results may not generalize to situations in 
which programmers are closely familiar with the code they 
maintain. It is also possible that some of our observations are a 
consequence of the program’s size, rather than aspects of 
maintenance work. Finally, because the code was written without 
time-constraints, the quality of its design may not be 
representative of code that is maintained in industry. 

3.3 Tasks and Tools 
Participants were given the user complaints and requests 
described in 2nd and 3rd columns in Table 1 and 70 minutes to 
complete as many of the tasks as they could, in any order.  

 
Figure 1. Paint, debugged and improved over 70 minutes. 

Table 1. The five maintenance tasks and their solutions. Participants were not shown the solutions or task names. 
Task Name Complaint or Request Task Solution 
SCROLL Users complained that scroll bars 

don’t always appear after painting 
outside the canvas, but when 
they do appear, the canvas 
doesn’t look right. 

Fix Paint so that (1) the scroll bars appear 
immediately when painting outside the visible 
canvas and (2) the canvas is correctly 
rendered when using the scroll bars to 
navigate the canvas. 

The “preferred size” of the canvas inside of the scroll 
pane was not being updated as strokes were created, 
preventing the scroll bars from appearing when painting 
outside the window. This also caused the scroll pane to 
only repaint a fixed region. 

YELLOW Users complained that they can’t 
select yellow. 

Fix Paint so that users can paint with the color 
yellow. 

The green slider’s value was used twice in the 
colorChangeListener, but the blue slider’s not at all. 

UNDO Users complained that the “Undo 
my last stroke” button doesn’t 
always work.  

Fix Paint so that the Undo my last stroke 
button undoes the last stroke or clear of the 
canvas. 

There was no repaint call after the undo operation, 
causing the window to repaint only after some other 
operation that caused a repaint. 

LINE Users requested a line tool. 
There’s a radio button for it, but it 
doesn’t work yet.  

Create a line tool that allows users to draw a 
line between two points. Users should be able 
to see the line while dragging. 

A simple solution involved copying the PencilPaint class 
and revising its paint algorithm to draw a single line 
between the first and most recent points. 

THICKNESS Users requested control over the 
stroke thickness of the pencil, 
eraser, and line tools. 

Create a thickness slider with values from 
values 1 to 50, which controls the thickness of 
the stroke for all tools. 

A simple solution involved copying the initialization and 
event listener code for one of the color sliders, and 
calling setThickness() instead of setColor(). 



Interruptions came from a server on the experimenter’s machine 
and appeared on the participant's machine as a flashing taskbar 
item with an audible alert. The interruptions were designed to 
require programmers’ full attention, mimicking real interruptions 
[15] such as requests from coworkers for help on unrelated 
projects. Thus, when clicked, a full-screen dialog appeared with a 
2-digit multiplication question and text box for the answer. The 
server sent interruptions randomly, approximately every three 
minutes. The order of interruptions was fixed and identical. Each 
question was unique and did not contain 1 and 0 digits. 

Participants were given the Eclipse 2.1.2 IDE (released March 
2004) and a project with the 9 source files. Participants were 
allowed to use any resource they desired, including the Internet. 
The browser’s default page was the Java 1.4 API documentation. 
Participants used a PC and 17” 1024 x 768 LCD. Screen capture 
videos were recorded at 12 frames per second in 24-bit color and 
had no discernable impact on the PC’s performance. 

3.4 The Procedure 
Participants worked individually in a private lab. Participants 
completed a survey on their programming expertise and were then 
told that they would be given five user requests for an application 
and would have 70 minutes to complete them. Participants were 
told they would be paid $10 for each request completed. 
Participants were then told that a flashing taskbar item would 
occasionally interrupt them and that they should click it as soon as 
possible and answer the arithmetic problem presented. 
Participants were told they would lose $2 for each problem 
ignored or answered incorrectly. This was used to give the 
interruptions some cost, but was not actually enforced. 
Participants were told that their work would be recorded with 
screen capturing software. Participants were then given the user 
complaints and requests and told to address as many as possible in 
the next 70 minutes. Afterwards, the experimenter evaluated the 
participants’ code and paid participants accordingly. 

4. A QUALITATIVE ASSESSMENT 
Our resulting data set consisted of approximately 12 hours of 
screen-captured video. The first phase of our analysis focused on 
uncovering fundamental activities in programmers’ work. Our 
examination of the videos involved several steps:  

1. Looking ahead in the video to determine which task the 
programmer was working on. 

2. Returning to the beginning of the task to determine the 
goal of each of the programmer’s individual actions.  

3. Generalizing from the goals of programmers’ individual 
actions to more general activities. 

The first two authors performed these analyses together over 
about 40 hours, finding several trends in programmers’ work. We 
give an overview of these trends in this section, and discuss them 
with empirical evidence in Section 5. 

The most apparent trend in programmers’ work was their 
interleaving of three activities: (1) collecting a small working set 
of task-relevant code fragments; (2) navigating dependencies 
within the working set; and (3) editing and creating the code 
necessary to complete the maintenance task. The dark gray 
regions in Figure 2 portrays one such working set. 

We noticed many patterns in programmers’ formation of working 
sets. For example, when starting a task, they tended to ask one of 
two questions: 

1. How does X work? Programmers asked this when they 
wanted to integrate new and existing code (as in LINE and 
THICKNESS in Table 1). 

2. Why did(n’t) X happen? These were asked when 
programmers sought the cause of Paint’s output (as in 
SCROLL, YELLOW, and UNDO). 

Following these questions, programmers began a process of 
forming their working set. Because programmers started with no 
knowledge of Paint’s implementation, they were initially biased 
by what it seemed to be doing at runtime. Once they were more 
familiar with the code, they were biased by seemingly task-
relevant names of files, methods, and variables.  

Once programmers found task-relevant code, they tended to 
explore the code’s dependencies. During this exploration, 
programmers looked for answers to questions such as “What 
defines this variable’s value?” and “What uses this variable’s 
definition?” Programmers’ efficiency in answering these questions 
seemed to be influenced by which tools they used. Some tools 
seemed to slow programmers’ progress by imposing significant 
interactive overhead (e.g., extra clicking and visual searches), 
while others provided hidden or inconsistent feedback that caused 
programmers to overlook important code. 

Several things impeded the creation and repair of code. For 
example, Eclipse often provided hidden or inconsistent error 
highlighting, causing programmers to act on misinformation. 
Programmers also made errors when duplicating code via copy 
and paste, sometimes leaving copied references unchanged, or 
only copying part of a pattern of code. 

 
Figure 2. The 503 lines of the Paint program. Each box 
represents a single Java class file. The white regions portray 
the code that one programmer scrolled through, but did not 
stop to read, while working on the THICKNESS task. The light 
gray regions portray the code that he navigated to and read. 
The dark gray regions portray the code that he included in his 
working set, as indicated by his frequent navigation of 
dependencies between these regions. 



5. AN EMPIRICAL ASSESSMENT 
In order to empirically assess the trends described in the previous 
section, the first two authors transcribed the events listed in Table 
2 from participants’ videos, along with the start and stop times for 
each. They also recorded switches between the 5 maintenance 
tasks, situations in which programmers asked how and why 
questions, and any errors that programmers introduced. The first 
two authors enumerated Paint’s static and dynamic dependencies 
prior to transcription so that they could detect navigations of these 
dependencies in the videos. The first two authors transcribed each 
participant’s video together, taking about 3 hours per programmer. 

In this section, we provide empirical evidence for the trends 
described in the previous section. We report per programmer 
averages as average (± standard deviation) (space prohibits a 
thorough discussion of any skew, and/or floor or ceiling effects in 
this distributions). All time proportions we report exclude any 
time spent on handling interruptions, which accounted for an 
average of 22% (±6) of programmers’ time. 

5.1 Division of Labor 
Table 3 lists the number of programmers completing each task 
and the average time spent on each task (independent of whether 
the task was completed). Overall, each programmer finished an 
average of 3.5 (±0.8) tasks in 70 minutes. The pie chart shown in 
Figure 3 portrays programmers’ average division of labor in terms 
of the events in Table 2 (read counter-clockwise). 

5.2 Forming a Working Set  
Based on our qualitative assessments, the programmers’ central 
goal for each maintenance task was to collect a working set of 
task-relevant code fragments. We considered any code fragment 
that a programmer modified or followed static or dynamic 
dependencies on to be part of the programmer’s working set for a 
task. These code fragments were individual statements or 
expressions, lists of statements, or complete methods, and 
consisted of an average of 18 (±11) lines of Java code per task. 

Programmers began each task by searching for task-relevant code.  
Of the 48 instances of a programmer beginning work on a task, 40 
began with a search for a task-relevant name of a program 
element. For example, when beginning the LINE task, 
programmers often searched for the text string “line,” “drag,” or 
“pencil.” Among these searches, only 1/2 led to task-relevant code; 
in the other instances, the name led to task irrelevant code. 
Programmers used Eclipse’s find and replace dialog for only 6 of 
these searches; in all other instances, they scrolled through the 
code, visually searching for the task-relevant names. In the 8 
instances where programmers did not search for a name, they 
navigated to code that they were familiar with from previous 
tasks; only 2 such navigations led to relevant code. 

Surface features of Paint’s output influenced programmers’ 
choice of names to search for or familiar code to inspect. For 
example, 8 of the 9 programmers who attempted the SCROLL task 
first resized the Paint window and noticed that the canvas was 
only partially painted; thus, they decided to find a method name 
with the name “paint” in it, which typically led them to the 
paintComponent() method of the canvas, which was irrelevant. 
Overall, an average of 88% (±11) of programmers’ hypotheses 
about the cause of runtime failures were false, causing each 
programmer to spend an average of 25 (±9) minutes of their time 
inspecting task-irrelevant code. This data is comparable to our 
prior studies of false hypotheses in novice programming [13]. 

Five programmers temporarily abandoned the more difficult tasks 
(LINE and SCROLL) to work on easier tasks. Because part of their 
working sets were represented by the open file tabs (as in Figure 
4) and the state of the package explorer (as in Figure 5), they often 
lost their working sets when closing tabs or package explorer 
nodes. When programmers returned to these tasks, they spent an 
average of 60 seconds (±28) recovering their working sets. 

Table 2. The types of events transcribed from the screen-
captured videos of programmers’ work and what details were 
recorded for each. 

Reading a segment of code, identified by the movement of the text 
caret through a code fragment or the hovering of the mouse over code. 

Editing code, and the tool that was used (keyboard, copy and paste, 
refactoring, quick fixes, etc.). 

Navigating between dependencies, the tool that was used to perform 
the navigation, and whether the navigation returned to code recently 
navigated from. 

Searching for names, and the Eclipse tool that was used. 

Testing Paint. The duration of testing was recorded from the time of 
execution to the time of returning to Eclipse.  

Reading the Java API documentation and whether Eclipse or a web 
browser was used to view it. 

Switching environments (between Eclipse, Paint and the web browser). 

Reading the task descriptions. 

Table 3. The number of programmers completing each task 
and the average time spent on each. 

Task # of Programmers that 
Completing the Task 

Average Time Spent on 
Task 

SCROLL 1 of 10 17 (±13) min. 

YELLOW 10 of 10 10   (±8) min. 

UNDO 9 of 10 6   (±5) min. 

LINE 6 of 10 22 (±12) min. 

THICKNESS 10 of 10 17   (±8) min. 

 
Figure 3. Programmers’ division of labor (excluding 

interruptions) in terms of the events in listed in Table 2. 



5.3 Navigating the Working Set 
Each programmer navigated an average of 65 (±18) dependencies 
over their 70-minutes. A close inspection of these navigations 
revealed two types. Some were of direct dependencies, such as 
going from a variable’s use to its declaration, or from a method’s 
signature to a call on the method. The other type of navigation 
was of indirect dependencies, such as going from a variable’s use 
to the method that computed its most recent value. Programmers 
tended to make these indirect navigations once they understood 
the intermediate direct dependencies. The proportions of each 
type of navigation are given in Table 4. 

5.3.1 Navigations of Direct Dependencies 
An average of 58% (±20) of programmers’ navigations were of 
direct dependencies. Though every programmer used Eclipse’s 
support for navigating these direct dependencies at least once 
(when available), only 2 programmers used the tools more than 
once, and only then for an average of 4 (±2) navigations. Instead, 
they used less sophisticated tools such as the find and replace 
dialog. There are several reasons why they may have preferred 
other tools. For example, programmers had to set up the Java 
Search dialog and then iterate through its results. Then, in using 
both the Java Search and Open Declaration tools, new tabs were 
often opened, incurring the future cost of searching through and 
eventually closing the new tabs if the files they represented were 
not relevant. 

Programmers used the find and replace dialog for an average of 8 
(±6) of their navigations of direct relationships. Programmers 
spent an average of 9 (±5) seconds iterating through matches 
before finding a relevant reference and frequently had to 
reposition the dialog to uncover concealed code. Also, in 5 
instances of using the dialog, programmers did not notice that 
“wrap search” was unchecked, and as a result, were led to believe 
that the file had no occurrences of the string. One programmer 
spent as much as 6 minutes searching for a name elsewhere before 
discovering that there were in fact several uses in the original file. 

Overall, an average of 27% (±13) of programmers’ navigations of 
direct dependencies returned to code just navigated from. This 
suggests that over half of programmers’ navigations of direct 
relationships were part of “glances” (there and back). 
Programmers searched for an average of 9 (±7) seconds before 
finding their previous location, costing an average of over 2 (±1) 
minutes per programmer over all of their direct navigations. 

5.3.2 Navigations of Indirect Dependencies 
An average of 42% (±20) of programmers’ navigations were of 
indirect dependencies. Because Eclipse’s support for navigating 
direct dependencies was unhelpful for these navigations, 
programmers had to use the scroll bars, page up and down keys, 
the package explorer and the file tabs instead. 

 
Figure 4. The file tabs, which represented part of a programmer’s working set of task-relevant code. Because file names were 
truncated and many had identical prefixes, programmers spent considerable time searching through the tabs for a particular file. 

 
Figure 5. The package explorer, which represented part of 

programmers’ working sets. 

Table 4. Types of dependencies that programmers navigated, 
the percent of each type among all programmers’ navigations, 
and the Eclipse tool that directly supported the navigation. 

Type of Dependency % of All Eclipse Tool 

Indirect 42% (±20) - 

This class’s declaration 10%   (±4) Open declaration 

Uses of this variable 10%   (±5) Java search 

Calls to this method 8%   (±8) Java search 

This variable’s type 8%   (±4) Open declaration 

Uses of this variable’s new value 7%   (±4) - 

This method’s declaration 6%   (±4) Open declaration 

Statement that set this variable 5%   (±5) - 

Uses of this class 4%   (±3) Java search 



When navigating within a file using the scroll bars or page up and 
down keys, programmers had to perform lengthy visual searches 
for their targets, costing each programmer, on average, a total of 
10 (±4) minutes. Three programmers tried to avoid this overhead 
by using Eclipse’s bookmarks to mark task-relevant code but then 
always ended up having more than two bookmarks to choose from 
and could not recall what code each one represented. This 
required clicking on each bookmark, which was no faster than 
their average scrolling time. Bookmarks also incurred the 
“cleanup” costs of their later removal when starting a new task. 

Programmers had to use the package explorer and the file tabs to 
navigate indirect relationships that were between files. When 
several tabs were open (as in Figure 4), programmers could not 
read the file names. If the package explorer had several expanded 
nodes (as in Figure 5), programmers had to scroll to find their 
targets. Overall, this overhead cost each programmer an average 
of 5 (±1) minutes. 

An average of 34% (±23) of programmers’ navigations of indirect 
relationships returned to a code fragment that was recently 
inspected. Programmers were likely performing these navigations 
in order to juxtapose and compare a set of code fragments. In each 
of these navigations, programmers searched for an average of 10 
seconds (±14) before finding their target, costing an average of 
about 2 (±1) minutes per programmer overall. Although Eclipse 
supports viewing multiple files side-by-side, placing any more 
than two files side-by-side would have incurred the interactive 
overhead of horizontal scrolling within each of the views since so 
little code would have been visible. 

5.4 Hidden and Inconsistent Feedback 
After programmers sufficiently understood their working set of 
code, they began to create or repair the code necessary to 
complete their task. They faced several obstacles in obtaining 
reliable feedback from Eclipse in the process. 

Many obstacles were simple compiler errors. Eclipse is different 
from other modern IDEs because it incrementally compiles code 
while it is being edited, allowing more immediate feedback about 
compiler errors. While this was frequently helpful for identifying 
common errors, there were 24 instances across the 10 
programmers’ sessions where Eclipse marked valid syntax as 
invalid. For example, when programmers forgot syntactic 
delimiters such as semi-colons or curly braces, Eclipse marked the 
valid syntax just after the missing delimiter as incorrect (as in 
Figure 6). In these situations, programmers knew that the 
highlighted code was valid, but they had to spend time searching 
for the invalid code. Also, because Eclipse’s incremental compiler 
was often invoked only after a file was save, code that 
programmers thought they had repaired, and in fact did repair, 
often remained marked as invalid (as in Figure 7). If programmers 
were interrupted before they had saved, they often returned from 
interruptions, not realizing they had not saved, and tried to repair 
their already valid code. Overall, each instance where Eclipse 
inconsistently marked code cost an average of 38 seconds (and at 
least 10 seconds) before programmers realized the inconsistency. 

Three programmers overlooked the off-screen error in Figure 8 an 
average of 3 times before noticing it. This cost each of these 
programmers an average of 6 (±1) minutes of unnecessary 
debugging. In many situations, programmers quickly scrolled to 
right to glance at the code off-screen, and quickly scrolled back. 

 
Figure 6. Eclipse frequently marked syntactically valid code 
as invalid because of syntax errors above. 

 
Figure 7. Eclipse frequently marked valid code as invalid 
because programmers had not invoked the incremental 
compiler by saving the file. As a result, programmers spent 
time trying to repair valid syntax. 

 
Figure 8. The off-screen duplication of a reference to gSlider 
(the solution to the YELLOW task), which was frequently 
overlooked because programmers only glanced at it. 

 
Figure 9. Two copy and paste errors caused by an 
interruption. At (1), tSlider’s listener should be changed from 
colorChangeListener to thicknessChangeListener. In (2), the 
programmer neglected to add tPanel to the colorPanel. 

 



5.5 Copy and Paste Errors 
Every programmer used copy and paste for the LINE and 
THICKNESS tasks to copy code and then modify it to perform a 
similar function. Programmers copied code an average of 4 (±3) 
times during their work. This behavior was previously 
documented by Rosson and Carroll in a study of Smalltalk [16].  

In 10% of the copies, the programmer left one or more visually 
indistinct or off-screen references unchanged (one such error is 
portrayed in point 1 of Figure 9). Because these references were 
syntactically valid, the compiler did not complain, and because 
programmers believed that their copied code was correct, it was 
the last place they looked for errors. Programmers spent an 
average of 3 (±1) minutes testing false hypotheses before finding 
these errors, except in one case (not included in the average), 
where a programmer worked for over 18 minutes. 

In 12% of the copies, the programmer only copied part of a 
pattern of code that had to be distributed within and/or between 
files. These partially copied patterns often led to dead-end data: 
variables that were assigned some value that was not subsequently 
used (one such error is shown in 2 of Figure 9, where the new 
tPanel was supposed to be added to the colorPanel). When these 
errors led to runtime failures, programmers did not think to look 
for these unused definitions, because they did not know they were 
unused. Programmers spent an average of 4 (±1) minutes testing 
false hypotheses before finding such dead end data. 

5.6 Overall Navigational Overhead 
While no single problem in the previous sections incurred 
dramatic overhead, overall, navigation was a significant 
bottleneck. Adding the navigational costs of recovering working 
sets, iterating through search results, returning from navigations, 
and navigating between indirect dependencies within and between 
files, programmers spent an average of 19 minutes, or 35% of 
their time not spent answering interruptions, simply navigating. 

6. DESIGN REQUIREMENTS AND IDEAS 
The central goal of our study was to elicit design requirements for 
tools to help with maintenance tasks. To this end, we present a 
summary of our empirical findings and corresponding design 
requirements in Table 5. It is important to note that the 
requirements listed in Table 5 do not include requirements from 
our study already satisfied by Eclipse. For example, the results of 
our study suggest that Eclipse’s “open declaration” and other Java 
search tools are essential features for every maintenance-oriented 
IDE. Here, we limit our discussion to requirements that have yet 
to be satisfied by a modern IDE. 

Given these requirements, what type of environment would best 
satisfy them? There are several possibilities. For example, since 
many of the bottlenecks identified in our study were partially due 
to a lack of screen real estate, it is possible that simply giving 
programmers a larger screen, but the same environment, might 
mitigate many of these inefficiencies. However, while more space 
would, for example, leave more room for file tabs and result in 
fewer off-screen code fragments, it would not make direct or 
indirect dependencies easier to identify or navigate, nor would it 
help any of the other fundamental difficulties discussed in Table 
5. Furthermore, more space might even introduce issues with 
screen real estate management, removing one interactive 
bottleneck, while introducing another. 

Rather than further discuss incremental improvements to Eclipse, 
in the rest of this section we discuss several new ideas for 
maintenance-oriented IDEs. We will describe these ideas relative 
to the conceptual sketch of a new kind of maintenance-oriented 
IDE shown in Figure 10. We will discuss the features of the IDE 
by the requirements in Table 5 that the features satisfy, and use 
one programmer’s working set for the THICKNESS task, which is 
portrayed in Figure 2, to illustrate our points. 

Table 5. Design requirements for maintenance-oriented tools, elicited from the empirical trends in the study. 

# Empirical Result Design Requirement for Maintenance-Oriented Tools 

R1 Programmers formed working sets of task-relevant methods and 
statements. 

Provide a working set interface that supports the quick addition and 
removal of task-relevant code fragments. 

R2 Because programmers had to store their working sets in the interactive 
state of file tabs and package explorer, when they changed tasks, they 
lost their working set. 

Automatically save and recover of working sets of task-relevant code 
fragments, ensuring that the tools used to navigate working sets are 
distinct from the tools used to represent working sets. 

R3 When programmers found task-relevant code, they tended to glance at 
its dependencies. Also, more than 60% of navigations of indirect 
relationships were for the purpose of comparison. All of these incurred 
significant visual search costs. 

When programmers add code to a working set interface, automatically 
add its direct and indirect dependencies. Then, directly or indirectly 
related code could be placed side-by-side, avoiding the interactive 
overhead of opening and closing file tabs. 

R4 When copying code, programmers often left indistinct or off-screen 
references unchanged. Because they believed the copied code was 
correct, it was the last place they checked for errors. 

Copied code should maintain a dependency with its “original” so that 
unchanged references can be marked as “suspect” until verified. These 
markers should be apparent even when off-screen. 

R5 When copying a pattern of code that was distributed within or between 
files, programmers often duplicated only part of the pattern, leading to 
dead-end data. 

When programmers copy code, the IDE should check if the programmer 
is neglecting any dependencies in the copied code and offer to help 
collect them. 

R6 Programmers searched for task-relevant names, but only half of such 
searches led to task-relevant code. Programmers also used surface 
features of Paint’s output to deduce the cause of failures, but only a 1/4 
of such features correlated with the cause. 

Let programmers ask about program output of interest and have the IDE 
gather all of the code that was directly responsible for the output in 
question. This way, the correct working set can be built automatically by 
the IDE. 



6.1 Fragments Instead of Files 
Programmers’ working sets consisted of code fragments 
containing individual statements and methods, as opposed to 
whole files (R1 in Table 5). Thus, IDEs should allow 
programmers to organize and view their work in terms of these 
fragments. For example, the tool in Figure 10 portrays all of the 
code fragments that were part of one programmers’ final working 
set for the THICKNESS task on a single screen. Compare this view 
of the code to the extent of his navigations portrayed in Figure 2. 

To add code fragments, programmers could simply select a region 
of code in a traditional editor and drag it to the environment 
shown in Figure 10. When doing so, the IDE could automatically 
add all of the direct and indirect dependencies in the code. 
Programmers could then “prune away” the task-irrelevant 
dependencies by simply dragging them out. Having the system 
automatically include dependencies, rather than having the 
programmer collect them manually, would ensure that no 
dependencies were overlooked, possibly preventing future errors. 

6.2 Sets of Working Sets 
Because programmers’ working sets were represented by the 
interactive state of the package explorer and file tabs, 
programmers frequently lost their working sets when changing 
tasks (R2) because they had to close tabs and collapse nodes to 
make room for others. Instead, programming environments could 
allow programmers to save explicit representations of their 
working sets and help maintain a list of unfinished maintenance 
tasks, as in point (1) in Figure 10. This way, if a programmer was 
working on several independent maintenance tasks, all of the 
relevant state could be preserved and recovered by the 

environment, rather than manually by the programmer. In 
collaborative software development situations, the iconic 
representations of a working set could become highlighted when 
other programmers modify code fragments that are part of the 
working set. Not only would this give programmers a notification 
about a potentially important changes in their tasks, but it would 
also create the opportunity for collaboration on the task, or help 
avoid the overhead of a duplicated effort. 

6.3 Supporting Reading 
Nearly 1/5th of programmers’ time was spent reading code within 
a fixed view in the Eclipse editor (as in Figure 3). This reading 
likely consisted of visual searches for local dependencies in the 
code, by looking for similar names. Thus, it could be very helpful 
to highlight dependencies in the code automatically (points 2, 3 
and 4) based on the current text caret position or text selection 
(point 5). This way, programmers could inspect a program 
element’s dependencies by simply clicking and moving the text 
caret, as opposed to using Eclipse’s cumbersome commands and 
dialogs. This would incur virtually no interactive overhead, but 
would reveal nearly all of the important relationships for which 
programmers in our study had to carefully read (and re-read) to 
discover, even those that would have been off-screen.  

In addition to reducing the interactive cost of finding 
dependencies, this selection-based dependency highlighting could 
also help prevent and find errors. For example, as soon as the text 
caret moves over the reference to bSlider at point (5) on the right 
in Figure 10, the invalid reference to bSlider at point (4) on the 
left becomes immediately obvious, especially given its relative 
distance from the other valid references. 

 
Figure 10. A conceptual sketch of one possible maintenance-oriented development environment that could satisfy the requirements 
listed in Table 5. Each of the circled numbers is discussed throughout Section 6. 



6.4 Visualizing Dependencies 
Programmers spent considerable time glancing at dependencies as 
well as navigating between indirect dependencies for the purposes 
of comparison (R3). Instead of requiring programmers to navigate 
such relationships, programming environments could explicitly 
visualize these dependencies side-by-side, as in point (6) in Figure 
10. If all of the dependencies were on a single screen, there would 
be virtually no interactive overhead to compare a set of code 
fragments, since both direct and indirect relationships could be 
viewed without navigating. This would have saved each 
programmer an average of 9.2 minutes in our 70-minute study. 

In addition to more traditional relationships such as “uses” and 
“declares,” “copy of” relationships could also be shown, as in 
point (7), to help programmers compare copied code to its 
original. Unchanged references in the copied code could be 
highlighted, as shown in point (8), which would have prevented 
the costly errors in our study (R4). Also, to help avoid errors when 
copying code that is distributed within a file (R5), the IDE could 
hide unrelated code in order to bring the indirectly dependent code 
closer, as in point (9). 

6.5 Context In-Place 
One potential tradeoff of the view in Figure 10 would be that 
programmers would not see the code surrounding each code 
fragments. While our study suggests that such context is mainly 
useful only for navigation, there may be other situations context is 
important. One way to support this would be to show the 
surrounding code in-place. For example, programmers could hold 
a meta key in order to temporarily see the surrounding code 
around the text caret, without having to navigate to it. This could 
serve as a quick reminder of the purpose of the surrounding code, 
but would incur very little interactive overhead to invoke. 

6.6 Working Sets From Questions 
When starting a task, programmers typically asked a how or why 
question about the program’s output (R6). To answer these 
questions, programmers essentially had to guess an answer to the 
question and then verify it by inspecting the code. Not only did 
this cost time, but programmers also frequently made risky 
assumptions about the program’s runtime behavior in the process, 
often leading to errors. Therefore, instead of requiring 
programmers to answer these why and how questions themselves, 
programming environments could provide an interface for asking 
directly about program output and have the system automatically 
build a working set of task-relevant code with a precise dynamic 
slice [18] on the output in question. This is in fact precisely what 
the Whyline [13] does for why did and why didn’t questions, 
which was shown to reduce novices’ debugging time by a factor 
of 8, and help them complete 40% more tasks compared to 
novices without the Whyline. 

When using a Whyline-like tool to ask “why” questions (point 
10), programmers questions could be checked for invalid 
assumptions about the program’s runtime behavior, and the 
interface could reveal such assumptions by comparing the 
question against what actually happened in the program’s runtime 
history. For example, the programmers in our study could have 
asked, “Why wasn’t undoButton’s action executed?” and the tool 
could have replied, “undoButton’s action was executed; maybe its 
execution didn’t change anything on-screen?” This would prevent 
programmers from acting on false assumptions about a program’s 

behavior, saving time, and potentially preventing errors from 
being introduced due to these false assumptions. Furthermore, the 
tool could automatically build a working set of the code executed 
as a result of the action being executed, helping the programmer 
to find out whether and why nothing changed on-screen. We are 
currently developing a Whyline prototype for Java. 

To use the “What happens when...?” tool to answer how questions 
(point 10), programmers could execute a program, click the 
“What happens when...?” button, and then perform some action 
on a user interface in the program to show the tool what dynamic 
behavior to analyze. For example, to determine what happens 
when a button is pressed in a program with a graphical user 
interface, rather than manually inspect a program’s code for code 
that seems related, the programmer could ask the environment to 
automatically collect all of the static and dynamic dependencies 
related to the click event on the button of interest by simpling 
clicking on the button. The environment would then build a 
working set of code that was executed as a result of clicking the 
button, determine all of the direct and indirect static and dynamic 
dependencies, and present them to the programmer. 

7. CONCLUSIONS 
We have presented a study that suggests that maintenance work 
consists of three fundamental activities focused on forming, 
navigating, and manipulating a working set of task-relevant code 
fragments. Our findings are largely consistent with previous 
studies of program comprehension: programmers’ understanding 
is facilitated by recognizable patterns in code [3, 6]; expert 
programmers often start understanding code top-down, but finish 
bottom-up [5]; and programmers follow an as-needed strategy for 
navigating dependencies [9]. Our study augments these findings 
with a higher-level account of maintenance work, and specific 
data on the impact of the Eclipse IDE on programmers’ 
maintenance task performance. In particular, our study found that 
on average, programmers spent about 35% of their time with the 
mechanics of navigating between dependencies. 

Of course, our study also suffers from several limitations. The 10 
programmers in our study are not likely to be representative of 
programmers in industry. The size of the Paint program is 
certainly not representative of heavily maintained software 
systems. Programmers that work on teams may have different 
strategies for maintaining code that do not involve forming 
working sets of task-relevant code; for example, they may be 
given a set of code to maintain and have to collaborate with other 
maintainers if their tasks take them outside of this set. Further 
studies of maintenance work are required to verify the 
generalizability of our findings. 

Despite such limitations, our study’s findings have directly 
inspired several novel ideas for maintenance-oriented IDEs that 
deserve further elaboration and development. We are currently 
building an environment like the one portrayed in Figure 10 to 
support Java programs that we hope will both eliminate the 
interactive overhead identified by our study, as well as come 
closer to solving some of the fundamental difficulties of 
maintenance activity that we observed. We intend to evaluate its 
utility both in the lab and in the large to see how well the findings 
in our study generalize in practice. We hope that others will find 
the results presented in this paper useful for similar inspirations. 
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