
Design Requirements for More Flexible Structured Editors
from a Study of Programmers’ Text Editing

Andrew J. Ko, Htet Htet Aung, and Brad A. Myers
Human-Computer Interaction Institute

Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213

ajko@cmu.edu, hha@zizawah.com, bam+@cs.cmu.edu

ABSTRACT
A detailed study of Java programmers' text editing found that
the full flexibility of unstructured text was not utilized for the
vast majority of programmers' character-level edits. Rather,
programmers used a small set of editing patterns to achieve
their modifications, which accounted for all of the edits
observed in the study. About two-thirds of the edits were of
name and list structures and most edits preserved structure
except for temporary omissions of delimiters. These findings
inform the design of a new class of more flexible structured
program editors that may avoid well-known usability
problems of traditional structured editors, while providing
more sophisticated support such as more universal code
completion and smarter copy and paste.

Author Keywords
Structured editors, interaction techniques.

ACM Classification
D.2.6. Programming environments; H.5.2 User Interfaces.

INTRODUCTION
In the past decade, programmers have adopted an increasing
number of tools that help create, modify, and navigate code
in a more structured manner. For example, the Eclipse IDE
offers auto-indenting and formatting, code completion tools
to help write method calls, refactoring tools that help rename
program elements and change method signatures, and
searching tools that help find uses of variables, methods, and
classes.
Unfortunately, most of these features fail in the presence of
syntax ambiguities. Since the late 1970’s, structured editors
such as the Cornell Program Synthesizer [4], MacGNOME
[3], and Alice [1] environments have escaped this limitation
by avoiding parsing altogether, instead allowing the direct
editing of the abstract syntax tree that represents a program.
Not only does this persistent, structured representation of
code prevent all syntax errors, but it also enables new ways
of visualizing and operating on programs that are difficult or
impossible with unstructured text.

We are currently designing new tools that also require
persistent structure, including universal code completion,
more immediate feedback and help with type errors, and
smarter copy and paste tools that maintain relationships
between original and copied code [2]. Unfortunately, while
persistent structure can help enable these innovations, it has
traditionally introduced a significant usability problem [3]:
because programmers are forced to use a top-down
interaction technique for every edit, many modifications to
code are more cumbersome than they would be with
unstructured text. For example, changing a while loop to an
if conditional in a structured editor requires creating the
conditional, moving the body of the while loop to the
conditional, and deleting the loop. The same modification in
an unstructured text editor would have only required
changing the keyword while to if.
One approach to designing a more flexible structured editor
is to try to support the same editing strategies that
programmers use for unstructured text, but with interaction
techniques that preserve structure and are just as fast or faster
to use than those offered by text editors. To test the
feasibility of this approach, we performed a study of
precisely how expert Java programmers utilize the flexibility
of unstructured text, focusing on three questions:
1. What types of low-level changes do programmers make

to code?
2. While making these changes, what intermediate states

do programmers pass through and in what order?
3. What user interfaces do programmers use to perform

these changes and why?
This paper reports on the identification of a small set of
editing patterns that account for all of the edits observed in
our study. These patterns suggest that the full flexibility of
unstructured text is not required for most of the
modifications that programmers make to code.

METHOD
The study was performed in the lab. Programmers were
asked to complete five maintenance tasks on a 503-line Java
painting program in a 70-minute period using the Eclipse 2.0
IDE. Three were debugging tasks, requiring single-line
changes, and two were enhancements, requiring the creation
and modification of classes, algorithms, and variables. We

Copyright is held by the author/owner(s).
CHI 2005, April 2–7, 2005, Portland, Oregon, USA.
ACM 1-59593-002-7/05/0004.

CHI 2005 | Late Breaking Results: Posters April 2-7 | Portland, Oregon, USA

1557

assumed that our choice of tasks would not influence
programmers’ character-level editing strategies.
We recruited 10 programmers with above-average self-rated
Java expertise (mean 3.8, SD = 1.3) on a 1 to 5 scale.
Programmers had a mean age of 21.6 years (SD = 2.6). We
recorded a total of 700 minutes of screen-captured video of
programmers’ work, with 20% of the time spent editing; the
majority of the remaining time was spent navigating and
testing code. Programmers tried several solutions for each
task, leading to significant diversity in edits.
We defined an edit as the result of inserting characters at the
text caret, deleting or overwriting the text selection,
backspacing over characters, undoing, pasting, or using code
completion. The edits in each programmer’s video were
recorded in transcripts like the one in Figure 1, resulting in a
set of 2770 edits. Although the number of programmers used
to generate this data set was small, we believe that the data
will generalize to any programmer with significant
experience with the Java language syntax.

RESULTS AND IMPLICATIONS
In this section, we identify patterns in programmers’ editing
strategies, recognizing that they may not generalize to
languages with syntax that is widely different from Java’s.

Names
Names appear in declarations and references. Name edits
were 43% of our data, and were one of seven types:
• Creating a name, by typing it from left to right (59%) or

using code-completion (5%).
• Replacing part of the internal structure of a name (13%),

as in replacing colorPanel with strokePanel.
• Correcting typos, by using the backspace key (10%).
• Replacing a name, by backspacing or selecting and

deleting the entire old name first (4%).
• Removing a name, by backspacing, overwriting, or

selecting and deleting (4%).
• Splitting a name (3%), as in splitting padd into p.add.
• Renaming (2%) a variable, method, or class and its uses.
About 25% of name edits resulted in semantically invalid
names, because the edit was an intermediate change (49%),
the name was undeclared (20%), or because of a typo (26%)
or misspelling (5%).

These editing patterns show that programmers modify names
in a variety of ways and create and modify names that are
undeclared; such edits are prohibited in many modern
structured editors, such as Alice [1]. These patterns also
show that names contain more internal structure than current
editors reason about; new structured editors may be able to
take advantage of this structure in novel ways.

Lists
In Java, list structures appear between list delimiters, such as
the {}’s surrounding lists of statements and the ()’s
surrounding lists of parameters. List elements are delimited
by single characters, such as the ;’s between statements and
the ,’s between parameters. List edits accounted for 23% of
our data, and were one of six types:
• Creating a new list, by typing the left list delimiter (32%);

Eclipse automatically completed right delimiters.
• Inserting a list element, by typing the element delimiter

first and then the element (9%), pasting list elements into a
list (9%), or in the case of statements, inserting a blank line
before typing the statement and the ‘;’ (35%).

• Removing a list element and its delimiter (8%), by either
backspacing, or selecting and deleting.

• Moving the right list delimiter (3%), by backspacing over
it and then inserting it elsewhere, in order to include or
exclude nearby elements from a surrounding list.

• Removing an entire list and its elements (2%), by either
backspacing or selecting and deleting.

• “Flattening” a list inside of a list (2%), as shown in Figure
1, by removing the left and right list delimiters and any
unwanted elements. The remaining elements from the
“flattened” list were always left inside a surrounding list.

These editing patterns suggest that the arbitrary modification
of lists may not be required. For example, support for
moving or deleting the left list delimiter may not be required;
instead, structured editors could offer interaction techniques
to replace a list with a subset of its elements. Support for
deleting the right list delimiter may also not be required;
instead, structured editors could offer interaction techniques
for moving the right delimiter to include or exclude code.

Method Calls and Instantiations
Method calls have the form name(parameters) and
instantiations have the form new name(parameters).
Because both have a name and parameter list, most edits to

Edit Structure UI State

 constructor.setColor(new Color(rSlider.getValue(), gSlider.getValue(), bSlider.getValue()));

1 name overwrite constructor.setColort(new Color(rSlider.getValue(), gSlider.getValue(), bSlider.getValue()));

2 name insert constructor.thickness(new Color(rSlider.getValue(), gSlider.getValue(), bSlider.getValue()));

3 new backspace constructor.thickness(new Color(rSlider.getValue(), gSlider.getValue(), bSlider.getValue()));

4 name insert constructor.thickness(thickSlider.getValue(), gSlider.getValue(), bSlider.getValue()));;;;;;;

5 list backspace constructor.thickness(thickSlider.getValue(), gSlider.getValue(), bSlider.getValue()));

 constructor.thickness(thickSlider.getValue());
Figure 1. Five edits from a programmer's transcript. The 1st and 2nd changed the method name from setColor to thickness; the 3rd
backspaced across structural boundaries, deleting the new operator (except its right parenthesis); the 4th changed a dot operator’s left
operand from rSlider to thickSlider and the 5th deleted the new operator’s last two parameters and its dangling parenthesis.

CHI 2005 | Late Breaking Results: Posters April 2-7 | Portland, Oregon, USA

1558

these structures used the name and list edits described earlier.
When created, they were always typed from left to right in
their entirety. Several editing patterns applied directly to
these structures, accounting for 1% of our data:
• Creating a method call or instantiation using code

completion on an existing partial name (74%).
• Replacing a method call or instantiation with one of its

parameters (17%), as in replacing v.m(a, b) with b, by
backspacing, or selecting and deleting the text left and
right of the desired parameter.

• Removing an entire method call or instantiation (9%) by
selecting and deleting.

Despite the fact that method calls and instantiations have
different semantics and that both are specialized Java
structures, they were still edited as a simple name and list.
This suggests that programmers’ editing strategies had more
to do with their structure than their semantics.

Infix Expressions
In Java, infix expressions have the form operand

operator operand and include arithmetic, Boolean,
assignment, and dot operators. Infix edits accounted for 15%
of our data, and were one of seven types:
• Creating an infix operator with only the left operand

present, as in obj. (64%); with both operands present, as
in typing a ‘.’ after the obj in objmethod (5%); or by
pasting a complete infix expression (1%). They were never
created with only the right operand or neither operand
present.

• Replacing the infix expression with its left (8%) or right
(1%) operand, as in replacing var.method with var, by
backspacing or selecting and deleting.

• Re-activating code completion (8%), by removing and re-
inserting the dot operator.

• Removing an entire infix expression (5%), by backspacing,
or selecting and deleting.

• “Wrapping” a left or right operand (4%), by inserting a
parenthesis before and after the operand.

• “Unwrapping” a left or right operand (2%), by
backspacing over the parentheses around the operand.

• Changing the infix operator (2%) to a semantically
comparable alternative, such as changing + to –.

These patterns show that infix expressions were created in
many different orders, but never operator first, which is
exactly what traditional structured editors require. Also,
when infix operators were inserted between operands that
were not yet wrapped inside of parentheses, the structure was
temporarily ambiguous. This ambiguity may require
structured editors to allow “dangling structures” that are
complete and valid, but not yet owned by a structure.

Prefix Expressions
In Java, prefix expressions have the form operator

operand and include operators such as the !, –, ++, -- and

typecast operators. Prefix edits accounted for 1% of our data,
and were one of five types:
• Applying a prefix operator to an expression (81%), by

typing the operator name and then “wrapping” the operand
in parentheses (if necessary), or vice versa.

• “Unwrapping” a prefix operand (11%), by removing the
operator and then removing the parentheses around the
expression (if necessary), or vice versa.

• Removing an entire prefix expression (7%), by
backspacing, or selecting and deleting.

• Changing a prefix operator (1%) to semantically
comparable alternative, such as changing the type of a type
cast or a ++ to a --.

These editing patterns suggest that if structured editors
offered interaction techniques for “wrapping” and
“unwrapping” prefix operators around an expression,
arbitrary parenthesis placement may not be required.

Keyword Structures
Java’s “keyword” structures, such as declarations and if and
while constructs, involving one or more keywords, such as
class or extends, as well as one or more names and lists.
When created, they were always typed from left to right in
their entirety. Several editing patterns applied directly to
these structures, accounting for 6% of our data:
• Typing a required keyword (71%), in the process of typing

a complete keyword structure from left to right.
• Typing an optional keyword (16%), such as public or
extends, into an existing or new structure.

• Creating optional structure (7%), such as an initialization
statement in a variable declaration.

• Creating a declaration with refactoring tools (4%).
• Removing an entire keyword structure (2%) by selecting

its left and right extents and backspacing.
Programmers never modified required keywords, such as
changing an if to a while loop (as in the introduction).
Instead, programmers always deleted the existing structure
and created the new one, typically because there was little in
common between the existing code and the desired code.
Because keyword structures were always created, removed,
and selected in their entirety, structured editors may not need
to support their arbitrary modification or selection. The
flexibility to type optional keywords may also not be
required; instead keywords could be chosen from lists that
can be “typed-through,” easing their modification.

Literals
Literals include strings ("str"), characters ('c'), integers
(12345), floating-point numbers (123.45), and other
constant-valued terms. Literal edits were 8% of our data, and
were one of three types:

CHI 2005 | Late Breaking Results: Posters April 2-7 | Portland, Oregon, USA

1559

• Creating a complete literal (60%) by typing left to right, or
as part of name edits which became infix expressions (as
when 123.45myVar becomes 123.45 + myVar).

• Modifying a literal (27%), preserving its structure. For
example, programmers never wrote part of a string as in
"an unfinished string.

• Replacing a literal with an expression (13%) by first
removing the entire literal.

Comments
Java supports // comments, which exclude a complete line,
and /**/ comments, which exclude an arbitrary sequence of
characters. Comment edits accounted for 3% of edits in our
data, and were one of three types:
• Temporarily commenting out statements (60%) by typing a
// before a statement, as in “//repaint;” and often
creating an alternative statement above or below.

• Creating annotations (37%), which often referenced
named program elements such as variables and classes,
using either type of comment.

• Temporarily replacing an expression (3%), often in
unstructured ways, but with structured intent, as in “(a +
2);//b);”. These unstructured edits were likely due to
the hassle of typing /**/ comments within a line.

These edits suggest that arbitrary commenting of text may
not be required. Instead, structured editors could offer
interaction techniques that make it easy to comment out
arbitrary structures. Also, because annotations often
referenced names, the environment could give structure to
comments as well; for example, clicking a name in a
comment could navigate to the name’s declaration.

Undo
Programmers frequently made typos and more substantial
editing mistakes that they later fixed. We identified two
strategies for these repairs in our data:
• Repairing typos using the backspace key. This rarely

occurred immediately after a typo, but instead after several
other correct characters had been typed.

• Repairing more substantial mistakes by holding the
backspace key, or selecting and deleting. Because these
repairs frequently occurred after other correct edits were
completed, programmers rarely used Eclipse’s undo since
it would have required undoing these correct edits.

Because programmers made typos and mistakes in every
type of structure, structured editors need to support a deletion
mechanism for every creation mechanism. For example, if an
editor were to create a dot structure when a programmer
types ‘.’, there should also be a way to delete the structure
using the keyboard. However, our evidence suggests that
backspace was a versatile deletion mechanism because it
only depends on the text caret position, and not on the editing
history; thus, such deletion mechanisms should not depend
on the editing history either.

Text Selection
There were two circumstances where text was selected
across structural boundaries:
• Selecting for efficiency. Two or more structural edits, as in

the name change and list delimiter removal in Figure 1—
were performed with one selection.

• Multiple selection of list elements across list boundaries,
for example, selecting two statements before an if and
two inside of it. The intruding text between the elements
(in our example, the if header) was always deleted later.

These selections suggest that if structured editors offered
multiple selection mechanisms that obeyed structural
boundaries, many of the selections that programmers do in
unstructured text would actually be easier to perform.

CONCLUSIONS
Unstructured text provides programmers with considerable
freedom, but in our study, little of this freedom was utilized
to modify code. Rather, programmers used the small set of
editing patterns identified in our study to achieve their
modifications. When programmers did make unstructured
edits, they were typos, which were quickly repaired, or
temporary omission of delimiters. Thus, one way for
structured editors to be as flexible as text editors may be to
support the editing patterns that are enumerated in this paper
with interaction techniques that are just as fast or faster to use
than the techniques offered by text editors. We intend to
design, implement and improve on such techniques through
extensive user testing, while adding new features that are
only possible with the persistent structure offered by
structured editors.

ACKNOWLEDGMENTS
We thank Scott Hudson, James Fogarty, Elsa Golden, Karen Tang,
and Santosh Mathan for their help with the experiment design. This
research was funded by the National Science Foundation under NSF
grant IIS-0329090 and as part of the EUSES consortium under NSF
grant ITR CCR-0324770.

REFERENCES
[1] Kelleher, C., Cosgrove, D., Culyba, D., Forlines, C., Pratt, J.,

and Pausch, R., Alice2: Programming without Syntax Errors,
User Interface Software and Technology, Paris, France, 2002.

[2] Ko, A. J., Aung, H., and Myers, B. A., Eliciting Design
Requirements for Maintenance-Oriented Ides: A Detailed Study
of Corrective and Perfective Maintenance Tasks, International
Conference on Software Engineering, St. Louis,MI, to appear,
2005.

[3] Miller, P., Pane, J., Meter, G., and Vorthmann, S., Evolution of
Novice Programming Environments: The Structure Editors of
Carnegie Mellon University, Interactive Learning
Environments, 4, 2, 140-158, 1994.

[4] Teitelbaum, T. and Reps, T., The Cornell Program Synthesizer:
A Syntax-Directed Programming Environment,
Communications of the ACM, 24, 9, 563-573, 1981.

CHI 2005 | Late Breaking Results: Posters April 2-7 | Portland, Oregon, USA

1560

