
A Lightweight Model for End Users’ Domain-Specific Data

Christopher Scaffidi

School of Computer Science, Carnegie Mellon University

cscaffid@cs.cmu.edu

Abstract
Many end user programming tools lack adequate

support for domain-specific data. We will design a

lightweight representation for categories of data,

called “topes,” and develop simple methods that end

users and system administrators can use to define new

topes. To evaluate this approach, we will improve pro-

gramming tools so end users can write programs that

recognize data as instances of topes and manipulate

them accordingly. We expect that these enhancements

will help end users produce higher quality software.

1. Introduction

Many tools exist to help end users create software.

For example, office workers now have design tools for

spreadsheets, web pages, and databases. However,

most tools only allow users to work with data primi-

tives that the tool developer chose in advance to sup-

port. Unfortunately, tool developers’ notion of what

primitives are useful never entirely match users’.

In order to characterize end users’ most commonly

occurring data, we performed a series of studies. We

began by reanalyzing government statistics on Ameri-

cans’ computer use at work, which revealed that the

largest end user population is office workers, and the

most widely used programming tools are spreadsheets

and databases [5]. To more precisely characterize us-

ers’ programming practices, we surveyed over 800 end

users (mostly managers) concerning their use of pro-

gramming tools and learned that data manipulation

programming features are more commonly used than

imperative programming features [4]. These studies

suggest that a significant part of programming tools’

value comes from their support for data manipulations.

However, our recent contextual inquiry of office

workers (as well as our survey mentioned above) re-

vealed that tools often provide inadequate support for

domain-specific data [6]. For instance, we observed

workers doing many “look up” operations while filling

out web forms in the browser; one important example

was looking up government-approved per diem rates

for municipalities. At first, it seemed as though these

repetitive actions could be automated with web macros

using a tool like Lapis [1]. However, on closer reflec-

tion, it became clear that these tools could not auto-

mate most tasks because they could not automatically

convert data from one format to another; for example,

automating per diem lookup would require reformat-

ting state abbreviations to names (e.g.: “OH” to

“Ohio”). We saw similar lookup and reformatting tasks

in spreadsheets and web page design tools, as well.

In summary, tools often force users to treat data as

numbers or undifferentiated “text” rather than ISBNs,

phone numbers, address lines, person names, docu-

ment titles, and so forth. Prior attempts to represent

such abstractions have shown various limitations.

For example, as mentioned above, Lapis [1] can rec-

ognize various data patterns and automate browser op-

erations but cannot reformat data automatically. A sec-

ond approach, Apple data detectors, also can detect data

patterns, but authoring patterns and relevant operators

requires using a full scripting language; “this task is for

programmers only” [2]. Moreover, detectors must be in-

stalled on each machine rather than configured organiza-

tion-wide, which could inhibit deployment of organiza-

tion-specific data detectors. A third approach, formal

type systems [3], also requires users to define categories

of data using fairly advanced languages.

To succeed, our approach must address these limita-

tions as well as three additional issues. First, different

people have different notions of what each abstraction

“looks like” (e.g.: American phone numbers versus Brit-

ish phone numbers). Second, there are exceptions for

each abstraction (e.g.: “000-121-2833” is not a valid

American phone number). Finally, tool designers lack

resources and knowledge to write code for every con-

ceivable domain-specific abstraction. For these reasons,

workers must be able to define and customize data rep-

resentations on a per-organization or even per-user basis.

2. Proposed approach

We propose to meet these requirements by enabling

end users to extend tools with new data abstractions as

needed. Each such abstraction, provisionally called a

“tope,” is defined by a set of rules:

• For estimating the likelihood that a string of charac-

ters is of this tope (“isa”)

• For estimating the likelihood that two strings of

characters refer to the same instance (“equality”)

• For transforming among different formats of this

tope (“isotopes”)

0-7695-2586-5/06 $20.00 © 2006 IEEE 242

Tope definitions will be stored in organization-

specific repositories and customized by system admin-

istrators according to the needs of end users at that or-

ganization. For example, administrators at Carnegie

Mellon University could customize our repository to

define “Oracle string,” which is a data abstraction rep-

resenting project numbers at our organization.

Tope definitions contain only a few rules, so we be-

lieve that we can develop methods enabling even ordi-

nary end users to define custom topes for personal use.

For example, dialog-driven programming-by-example

could be used to define some tope patterns through

machine learning. For topes corresponding to a finite

set, it may be more convenient to let the user define the

list of valid instances. Finally, some topes can be ap-

proximately represented using a context-free grammar.

This approach promises two immediate applica-

tions. First, topes could be used to provide automatic

input validation in end user programs; for example,

editors for spreadsheets and web forms could use tope

definitions to automatically generate validation code

that would highlight potentially erroneous inputs. Sec-

ond, topes could be used to automate data reformat-

ting; for example, web macro recorders could use tope

definitions to detect that data needs reformatting (e.g.:

“OH” to “Ohio”), and then reformat the data accord-

ingly within the macro. Automatic data transforma-

tions may also prove useful during copy-and-paste op-

erations and during database bulk import/export tasks.

3. Proposed evaluation criteria

The primary goal of this proposal is to provide ab-

stractions supporting the diversity of domain-specific

data normally encountered by end users. The approach

outlined above aims to achieve this through an ex-

tremely lightweight representation amenable to a vari-

ety of tope definition methods. We will perform sev-

eral studies to verify that end users or system adminis-

trators can use these methods to define topes, and we

will determine which methods are easiest to use for

different types of topes. In particular, we will focus on

the usability of topes for office workers, since they are

currently the largest population of end users [5].

However, this ease of use comes at the cost of power.

In contrast to formal type systems, which offer a “method

for proving the absence of certain program behaviors,”

[3] tope rules only will estimate the likelihood of isa and

equality relationships. In other words, topes cannot offer

the ironclad guarantees that formal types can, so it is pos-

sible that the benefits of formal types—increased soft-

ware reliability, security, and readability [3]—may not

apply to topes. Thus, we must evaluate whether equip-

ping programming tools with topes actually leads to im-

provements in key software quality attributes.

Because spreadsheets are presently the most com-

mon end user programming tool, we intend to include

Excel in our list of tools. Web browsers are widely

used, as well, so we anticipate enhancing web macro

recorders and web application design tools.

In terms of key quality attributes, the unreliability

of end users’ programs, especially spreadsheets, has at-

tracted a great deal of attention in the literature, so we

will include measures of correctness in our evaluation.

In particular, with respect to web applications, we in-

tend to assess whether equipping design tools with

topes leads to programs with fewer security flaws. Fi-

nally, we will evaluate whether equipping program-

ming tools with topes leads to improved program con-

structability and maintainability, since using domain-

specific abstractions (rather than raw primitives like

float) should lead to improved readability.

In the short-term, defining topes and organizing

them into repositories will involve extra work by sys-

tem administrators and end users. However, in the

long-term, if many people can reuse the abstractions in

a variety of programming tools, then creating high-

quality programs may become easier overall. There-

fore, we believe that topes offer a promising opportu-

nity to help end users produce more effective software.

4. Acknowledgements

Thank you to Brad Myers and Mary Shaw for provid-

ing numerous suggestions concerning topes. This work has

been funded in part by the EUSES Consortium via the Na-

tional Science Foundation (ITR-0325273) and by the Na-

tional Science Foundation under Grant CCF-0438929. Any

opinions, findings, and conclusions or recommendations

expressed in this material are those of the author and do

not necessarily reflect the views of the sponsors.

5. References

[1] Miller, R., and Myers, B. Integrating a Command Shell

into a Web Browser. Proc. USENIX, 2000, 171-182.

[2] Nardi, B., Miller, J., and Wright, D. Collaborative, Program-

mable Intelligent Agents. ACM, Vol. 41, No. 3, 1998, 96-104.

[3] Pierce, B. Types and Programming Languages, MIT

Press, 2002.

[4] Scaffidi, C., Ko, A., Myers, B., and Shaw, M. Dimensions Char-

acterizing Programming Feature Usage by Information Workers.

Proc. Visual Languages and Human-Centric Computing, 2006.

[5] Scaffidi, C., Shaw, M., and Myers, B. Estimating the Num-

bers of End Users and End User Programmers. Proc. Visual

Languages and Human-Centric Computing, 2005, 207-214.

[6] Scaffidi, C., Shaw, M., and Myers, B. Games Programs

Play: Obstacles to Data Reuse, Online Proc. 2nd Work-

shop on End User Software Engineering, 2006, 22-24.

0-7695-2586-5/06 $20.00 © 2006 IEEE 243

