
A Data Model to Support End User Software Engineering

Christopher Scaffidi

Institute for Software Research

School of Computer Science

Carnegie Mellon University

cscaffid@cs.cmu.edu

Abstract
Many end user programming tools such as spread-

sheets and databases offer poor support for representing

data at a level of abstraction that is intuitive to users.

For example, users must work with “strings” rather

than person names, phone numbers, or street addresses.

As a result, validating and manipulating data is difficult.

This thesis develops a new user-extensible model

for semi-structured data items. Each “tope” within this

model defines how to recognize a kind of data item

based on format and context, and how to transform that

kind of item among valid formats. To show the useful-

ness of this model, we provide an environment to help

end-user programmers to create, share, and apply topes,

enabling these users to quickly implement data valida-

tion and reformatting functionality.

1. Problem overview

Many tools exist for creating spreadsheets, web ap-

plications, and databases. In many cases, the intended

user population is the “end-user programmer,” a person

who has enough skill to create simple software but who

is not a professional software developer [8].

To characterize end users’ needs for programming

features, we performed several studies. Reanalysis of

government data revealed that office workers comprise

the largest end user population, and spreadsheets and da-

tabases are the most widely used programming tools [8].

To more precisely characterize users’ programming

practices, we surveyed over 800 end users (mostly man-

agers) concerning use of programming tools and learned

that data structure abstractions are more widely used

than imperative programming features [6]. These studies

suggest that a significant part of programming tools’

value comes from their support for data manipulations.

However, this survey and our recent user studies re-

vealed that tools provide inadequate support for domain-

specific data [5][9]. For instance, browser-automation

tools like Lapis [2] are unable to automate repetitive

work in browsers because these tools cannot automati-

cally reformat data (such as a state from “OH” to

“Ohio”). We have documented many scenarios that are

poorly supported by existing browser-automation tools

[5], and we saw similar lookup and reformatting tasks in

spreadsheets and web page design tools. For these and

similar reasons, 25% of our survey respondents men-

tioned obstacles related to data reuse [9]. In fact, when

we interviewed creators of “person locator” web sites af-

ter Hurricane Katrina, we learned that even professional

programmers sometimes struggle with manipulating and

validating small semi-structured data items such as

phone numbers and mailing addresses [7].

Prior attempts to represent such abstractions have

limitations. For example, Lapis [2] can recognize data

patterns and automate browser operations but cannot re-

format data. This limitation also applies to context-free

grammars and regular expressions, which, in addition,

are hard for end users to understand and create [1]. Ap-

ple data detectors can detect data patterns, but authoring

patterns and relevant operators requires using a scripting

language; “this task is for programmers only” [3]. An-

other approach, formal type systems [4] (and object-

oriented languages), also requires users to define catego-

ries of data using fairly advanced languages.

2. Overview of approach

A successful approach must address the related

work’s limitations and meet four additional require-

ments. First, tool designers lack resources and knowl-

edge to create every domain-specific abstraction, so we

must enable ordinary end users to define new abstrac-

tions. Second, different people have different expecta-

tions of data abstractions (e.g.: American phone num-

bers versus British), so our model must be expressive

and flexible. Third, each abstraction has exceptions

(e.g.: person last names may have a space or hyphen),

so our model must accommodate valid data items that

do not exactly match the dominant format. Finally,

some formats are used by many people rather than cus-

tom to each person, so abstractions should be sharable.

To meet these requirements, we will enable users to

define topes, each of which is a family of formats. A

tope will contain functions for estimating the confidence

that a string is properly formatted and for reformatting

strings among valid formats. Topes will be stored in or-

ganization-specific repositories and customized by sys-

tem administrators per the needs of users at that organi-

zation. For example, administrators at Carnegie Mellon

could customize our repository to define “Oracle string,”

our local data abstraction representing project numbers.

Vendors could offer topes as well and host them public

repositories; there may be other general tope repositories

on the web for topes used by many organizations.

3. Progress to date and contributions

The primary contribution is the topes idea, a light-

weight model for defining data formats and transfor-

mations among them. We will implement a network of

repositories so users can store and organize topes, and

we will create plug-ins so programming tools can ap-

ply topes directly or use them to generate appropriate

code for programs created by users.

We have built the basic topes editor and parser,

with a user interface that represents topes in English so

users can create, review, and customize topes. Our

parser tests a string against a format and indicates a

level of confidence that the string is properly format-

ted; our parser generates natural language explanations

when it assigns low confidence. We will extend the

system so users can define data reformatting.

We have implemented a format inference algo-

rithm that examines example data and creates a format.

Users can review and customize the format, then store

it and use it to find outliers in the training data.

We will design a tope guessing algorithm to look

at strings and determine which topes in the repository

are probably appropriate for describing those strings.

We will design a tope meta-model to record co-

occurrence of topes with contextual cues, so the sys-

tem can parse and guess topes more accurately. To

help users evaluate which topes to trust, we will adapt

software credentials [10] to record namespaces, au-

thorship, accuracy and other information.

4. Methods and evaluation criteria

We will evaluate the model’s expressiveness by de-

fining topes for data that we observed in our studies

[5][9]; we will conduct user studies to evaluate usability.

Ease of use will come at the cost of power.

Whereas formal types systems offer a “method for

proving the absence of certain program behaviors” [4],

topes estimate confidence of validity. Since topes offer

no ironclad guarantees, the benefits of formal types—

increased reliability, security, and readability [4]—may

not apply to topes.

Thus, after synthesizing the pieces into a working

system, we will perform user studies to evaluate whether

the environment enables users to produce programs with

improved quality. In particular, we will examine whether

topes enable users to create spreadsheets and web appli-

cations that are more correct, as these are two widely

used kinds of programs [8]. In addition, we will evaluate

if equipping tools with topes leads to improved construc-

tability and maintainability, since using user-intuitive

abstractions (rather than primitives like floats or strings)

should lead to improved readability.

5. Acknowledgements

Thank you to Brad Myers and Mary Shaw for nu-

merous suggestions concerning topes. This work was

funded in part by the National Science Foundation (ITR-

0325273) via the EUSES Consortium and by the Na-

tional Science Foundation under Grant CCF-0438929.

Any opinions, findings, and conclusions or recommen-

dations expressed in this material are those of the author

and do not necessarily reflect the views of the sponsors.

6. References

[1] A. Blackwell, SWYN: A Visual Representation for Regu-

lar Expressions. Your Wish is My Command: Program-

ming by Example, 2001, 245-270.

[2] R. Miller, B. Myers, Integrating a Command Shell into a

Web Browser, USENIX 2000 Annual Technical Confer-

ence, 2000, 171-182.

[3] B. Nardi, J. Miller, D. Wright, Collaborative, Program-

mable Intelligent Agents, Comm. ACM, 41, 3 (March

1998), 96-104.

[4] B. Pierce, Types and Programming Languages, 2002.

[5] C. Scaffidi, A. Cypher, S. Elbaum, A. Koesnandar, B.

Myers, The EUSES Web Macro Scenario Corpus, Version

1.0, Technical report CMU-HCII-06-105, Carnegie Mel-

lon University, November 2006.

[6] C. Scaffidi, A. Ko, B. Myers, M. Shaw, Dimensions

Characterizing Programming Feature Usage by Informa-

tion Workers, Proc. 2006 Symp. Visual Languages and

Human-Centric Computing, 2006.

[7] C. Scaffidi, B. Myers, M. Shaw, Trial by Water: Creating

Hurricane Katrina “Person Locator” Web Sites, Leader-

ship at a Distance, 2007, to appear.

[8] C. Scaffidi, M. Shaw, B. Myers, Estimating the Numbers

of End Users and End User Programmers, Proc. 2005

Symp. Visual Languages and Human-Centric Computing,

2005, 207-214.

[9] C. Scaffidi, M. Shaw, B. Myers, Games Programs Play:

Obstacles to Data Reuse, Proc. 2nd Workshop on End

User Software Engineering, 2006, 22-24.

[10] M. Shaw, Truth vs Knowledge: The Difference Between

What a Component Does and What We Know It Does,

Proc. 8th Intl. Workshop on Software Specification and

Design, 1996, 181-185.

